Gene editing technology, from the beginning of RNA interference (RNAi) technology to efficient developed enzyme technology, has been widely used in recent years. These efficient enzyme technologies include zinc finger nuclease (ZFN) technology, transcriptional activation-like effector nuclease (TALENs) technology, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system (CRISPR/Cas9) technology. The CRISPR/Cas (Cas) system is a gene editing tool for DNA modification regulated by a short RNA and is a new type of genome editing tool that is faster, more efficient, and more accurate than the zinc finger nuclease and transcription activator-like effector nuclease. This article reviews the structure and function of the CRISPR/Cas system, and is aimed to outline the Cas9 design strategy, factors that affect the Cas9 gene editing efficiency, off-target detection and analysis methods, and especially the application in animal gene editing studies. Based on CRISPR/Cas9 gene editing has been successfully implemented in a variety of animals, and it is expected to become a new feasible way to establish animal models and study disease prevention in veterinary science and research.
Keywords: CRISPR/Cas9; Gene editing; Animal model; Veterinary research
Published on: Jul 23, 2018 Pages: 15-19
Full Text PDF
Full Text HTML
DOI: 10.17352/ijvsr.000030
CrossMark
Publons
Harvard Library HOLLIS
Search IT
Semantic Scholar
Get Citation
Base Search
Scilit
OAI-PMH
ResearchGate
Academic Microsoft
GrowKudos
Universite de Paris
UW Libraries
SJSU King Library
SJSU King Library
NUS Library
McGill
DET KGL BIBLiOTEK
JCU Discovery
Universidad De Lima
WorldCat
VU on WorldCat
PTZ: We're glad you're here. Please click "create a new query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."