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Summary

The most prevalent and ubiquitous organisms in the world are bacteria-killing viruses called bacteriophages. The aim of this paper is to highlight some application 
areas of bacteriophages. There are both virulent and temperate bacteriophages in the environment, but only virulent bacteriophages are used for treatment, known 
as phage therapy. Since their discovery, bacteriophages have been considered a vital weapon to fi ght human and animal illnesses of bacterial origin. Currently, the 
emergence of growing microbial resistance to antibiotics and attention to bacteriophage use in treatment has all but grown up again. Correspondingly, the applications of 
bacteriophages for biocontrol purposes have become a remarkable opportunity in a number of fi elds, including farms and food production. Despite their treatment effects, 
bacteriophages also maintain a vital relationship with their hosts through moderating microbial populations and promoting their evolution by horizontal gene transfer. 
Additionally, they serve as vehicles for the transfer of vaccinations, the detection of dangerous microorganisms and systems for displaying proteins and antibodies. 
Bacteriophages are a varied collection of viruses that are simple to handle, making them suitable for use in treatments and biotechnology research. Hence, the expansion 
of various phage companies for phage production and the use of phage cocktails for the treatment of various bacterial diseases at different stages is recommended.
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Introduction

Viruses are regarded as intracellular parasites that require a 
specifi c host cell for replication. A type of virus that only targets 
and replicates within bacterial cells is called a bacteriophage 
[1]. Bacteriophages consist of a genetic material, which can be 
either deoxyribonucleic acid or ribonucleic acid, surrounded 
by a protein coat, or capsid. Phages are structurally simple 
and extremely diverse, representing the most abundant living 
organisms in the environment. It’s expected that there are 
between 1031–1032 bacteriophages helping to manage bacteria 
populations within natural ecosystems within the world at any 
given time [2]. Additionally, it has been claimed that they are 
in charge of eliminating 20% – 40% of the bacteria on marine 
surfaces once every 24 hours [3].

As natural adversaries of their host, bacteria, bacteriophages 
are helpful to humans in the fi ght against bacterial illness. 

Bacteriophages can infect bacteria either lyrically or 
lysogenically after adhering to receptors on their surface and 
introducing their genetic material. A lytic infection occurs when 
a bacteriophage multiplies, lysing the bacterial target while 
continuing to attack additional bacteria. During a lysogenic 
infection, a DNA bacteriophage inserts its genetic material into 
the bacterial genome and also passes on its genome to daughter 
cells as the bacterium grows. The incorporated phage DNA may 
extract itself from the bacterial chromosomes in response to 
changes in the environment, creating lytic phage particles [4-
6].

After bacteriophages were developed in the early 20th 
century, several researchers speculated about their capacity 
to destroy bacteria, which would surely make them useful 
therapeutic agents. But after World War II, when antibiotics 
were found, this natural potential medicinal agent received 
little attention and was only used as a research tool several 
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times (Clark and March 2016). Bacteriophages are accepted as 
harmless, effective [7] and innovative alternatives to the use of 
chemotherapies nowadays [8,9]. This would make it possible 
to stop the development of bacterial antibiotic resistance. 
Additionally, bacteriophages are recognized as effective 
agents for bio-decontamination against undesirable bacteria 
in hospitals, along the food supply chain and in fl ocks and 
livestock. [10,11].

Even though they are solely bacteria’s natural enemies, 
bacteriophages still have a vital relationship with their hosts 
because they control microbial populations and encourage 
horizontal gene transfer to speed up bacterial evolution [12]. 
Bacteriophages have contributed signifi cantly to the fi elds of 
molecular biology and biotechnology and continue to do so. 
They have helped to unravel many molecular biology riddles. 
Bacteriophages are receiving greater attention than ever before 
in today’s technologically advanced world due to their potential 
for use as antibacterials, diagnostic tools (phage typing), phage 
display systems and delivery methods for vaccines (Clark and 
March 2016).

Phage molecular biology research has recently fueled 
numerous biotechnological applications in a wide range 
of sectors, such as vaccine development, medicinal 
administration, bacterial detection systems, novel antibiotics 
against antibiotic-resistant bacteria, etc. Another possible area 
of use is the use of bacteriophages as natural antimicrobials in 
food to prevent undesirable microorganisms, which is probably 
acceptable to consumers [10,13]. Hence, the objectives of this 
paper are:

Hence, the objectives of this paper are:

• To review the role of bacteriophages in the treatment 
of diseases caused by different bacteria as well as in the 
bacterial diagnosis,

• To review the role of bacteriophages in vaccine 
administration.

Literature review

Taxonomy

In order to approve and coordinate the taxonomic coding 
and nomenclature of viruses, the International Committee on 
Taxonomy of Viruses (ICTV) was established in 1973. Notably, 
classifi cation is crucial for the following reasons: fi nding 
novel bacteriophages, fi guring out how phages are related 
to one another and maintaining bacteriophage databases 
and collections. Additionally, it can be utilized to identify 
either hazardous bacteriophages in the biotechnology and 
fermentation industries for control and eradication purposes 
or benefi cial bacteriophages with medicinal and industrial 
applications [14]. 

Based on the type of encapsulated nucleic acid and the 
appearance of their virion, bacteriophages are divided into 13 
families [15]. There are nine families with double-stranded 
DNA: the Corticoviridae (icosahedra capsid with lipid layer), 

Fuselloviridae (pleomorphic, envelope lipids, no capsid), 
Lipothrixviridae (enveloped fi laments, lipids), Myoviridae 
(contractile tail), Plasmaviridae (pleomorphic, envelope, 
lipids, no capsid), Podoviridae (short, non-contractile tail), 
Rudiviridae (helical rods), Siphoviridae (long, non-contractile 
tail) and Tectiviridae (icosahedral capsid with inner lipoprotein 
vesicle). Microviridae (icosahedral capsids) and Inoviridae (rod-
shaped with helical symmetry) were seen in single-stranded 
DNA. Cystoviridae (enveloped, icosahedral capsid, lipids) 
and Leviviridae (quasi-icosahedral capsid) are two families 
that have double-stranded RNA and single-stranded RNA, 
respectively. According to Ackermann [16], tail phages, which 
are a subclass of the Caudovirales order, account for more than 
96% of all bacteriophages. Additionally, they have a wide 
range of characteristics, including size and fi ne structure, DNA 
content and composition, the way proteins are made, serology, 
host range and physiology [14]. 

The three major families that make up the Caudovirales 
account for 60% of the described phages: Siphoviridae, 
Myoviridae and Podoviridae [14,17,18]. However, only three to 
four percent of the phages studied (polyhedral, fi lamentous 
and pleomorphic) belong to the ten families studied and some 
of these families are extremely small [16].

Bacteriophage life cycle

Because they lack their own metabolism, bacteriophages 
must totally rely on the machinery used by their bacterial 
hosts to produce energy and proteins in order to reproduce 
[19]. Adsorption (attachment), infection, multiplication and 
discharge (release) are typically the four steps that distinguish 
bacteriophage replication cycles from those of their bacterial 
hosts [20].

The attachment phase relies on the presence of specifi c 
receptors on the surface of the bacterial host cell, to which the 
phage can attach. The phage is delivered to the host receptor by 
random diffusion. Following attachment, the infection phase 
occurs because the phage genetic material passes into the host 
cell by a mechanism likened to injection [21]. After-infection, 
the beginning of the multiplication phase relies on the phage 
species. Virulent bacteriophages are known to require bacterial 
replication machinery for the assembly of the progeny of the 
phage within the bacteria. Several copies of those new phages 
are produced until a critical mass is reached, triggering the 
lysis of the bacteria’s semipermeable membrane and therefore 
the release of the new phage progeny to reinitiate the lytic cycle 
(Figure 1) [19,22]. This critical mass frequently depends on 
factors such as specifi c bacteriophage characteristics, the strain 
of bacteria infected by the virus, and therefore the environment 
within which the bacteriophage-bacteria interaction occurs 
[19]. Phage lytic enzymes (endolysins or lysins) play a major 
role in breaking down bacterial peptidoglycan during the 
ultimate stage of the lytic cycle. Additionally, some phages 
with fi lamentous morphology are capable of fl eeing from the 
host cell via cell membrane extrusion without causing the 
destruction of the host [15].

On the other hand, lysogenic phages are found to integrate 
their genetic material into that of the host, forming an entity 
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known as a prophage (Figure 1). This results in the vertical 
transmission of the virus’s genetic information to daughter 
cells of the bacteria through a biological process and it is 
also possible for viral genes and proteins to be expressed. 
Occasionally, the lysogenic phage’s genetic material stays 
inside the host bacteria’s cells as a distinct plasmid rather than 
integrating into its chromosome, where it might continue to 
pass from one bacterial generation to the next. The cycle can 
change from lysogenic to lytic as a result of stresses such as 
chemicals, UV light, or damage to the host DNA [23].

Because of the difference between phages, it’s important to 
see which are the most appropriate bacteriophages for 
every potential application [24]. Given the antibacterial 
activity of virulent phages, they’re considered suitable for 
biocontrol purposes, whereas temperate phages don’t seem 
to be usable because of the high probability that they’re going 
to cause horizontal gene transfer between bacteria [25], which 
is potentially related to the chance of favoring the spread of 
antimicrobial resistance or other dangerous genes between 
microbes through bacterial transduction. Non-lytic phages, 
on the other hand, are frequently as important in biomedical 
research, being used in phage display techniques [26] and 
potentially providing the ability to observe tumors [27] and 
treat some diseases [28].

Application of bacteriophages

Therapeutic agents: In order to combat bacterial illnesses 
or to cure environments contaminated with dangerous 
bacteria, viruses’ host specifi city offers an alluring approach. 
Although there is little research on the potential benefi ts of 
viral treatment, studies have demonstrated that illnesses 
in humans, plants, livestock, and aquacultured fi sh can be 
successfully treated using this technology [29,30].

The ability of bacteriophages to infect and kill bacteria led to 
the exploration of their therapeutic potential against bacterial 
pathogens in a clinical approach known as bacteriophage 
therapy/phage therapy, almost immediately after their 
innovation, with the fi rst therapeutic use in humans described 
in 1919, just two years after their innovation by d’Herelle [30,31]. 
Phages can support the progress of an infl ammatory response 

against bacteria via the breakdown of bacterial cell walls, 
which triggers the immune system [32]. Thus, bacteriophage 
therapies, i.e., the administration of bacteriophage cocktails to 
patients infected with bacteria, besides the direct removal of 
bacteria cells, further stimulate the immune system to fi ght 
against infection [33].

A wide variety of bacterial infection diseases, including 
cholera, dysentery, typhoid fever, skin and surgical site 
infections, peritonitis, septicemia, and external otitis, have 
been treated by phages before the discovery of antibiotics [34]. 
Nevertheless, an incomplete understanding of bacteriophage 
biology, together with the discovery and increased use of 
antibiotics during the 1940s and 1950s, as well as several other 
factors, led to degeneration in the clinical use of bacteriophages 
in Western Europe and North America. In contrast, phage 
therapy continued to be employed in the previous Soviet Union 
and certain Eastern European countries (e.g., Poland), where 
therapeutic phage preparations are still readily available in 
pharmacies today [30,33,35].

Two main advances played a major role in reviving the 
interest in bacteriophages as antimicrobial agents. First, 
the appearance and extensive distribution of antimicrobial 
resistance (AMR) bacterial pathogens have narrowed our 
therapeutic options. The situation is further worsened by 
the limited number of new antimicrobial drugs entering the 
market. Also, most novel antibiotics approved in recent years 
are modifi cations of existing drugs and, therefore, are at 
advanced risk of being rendered ineffectual in a short period 
[36]. Secondly, there has been an enlarged appreciation of 
the injury broad-spectrum antibiotics can impose upon the 
microbiome. In fact, antibiotic-mediated microbiome agitation 
is now believed to contribute to several non-communicable 
and chronic diseases [37].

Bacteriophages are classes of viruses that can attack and 
destroy bacteria without any impact on human or animal 
cells. As a result, it is supposed that they can be used, alone 
or in combination with antibiotics, to treat infections 
caused by bacteria [38]. Hyman [39] suggested the following 
features of bacteriophages be used for therapeutic purposes: 
(a) the bacteriophage should be lytic and be able to cause 
broad cytotoxicity to the target bacterium. (b) It should be 
completely lytic and should not become a lysogenic phage. 
(c) The bacteriophage should have the ability to transduce the 
host bacteria. (d) It should have the desired host range. (e) It 
should be checked for toxin genes that can affect the patient. 
Myoviridae, Siphoviridae, and Podoviridae families are used 
frequently for bacteriophage therapy [40,41]. There are around 
800 phages against pathogens like Escherichia, Klebsiella, 
Enterococcus, Pseudomonas, Staphylococcus, and Salmonella. [42].

Phage therapy may not completely replace antibiotics at this 
time, but there is optimism that it will be used in conjunction 
with antibiotics, particularly for strains that are resistant to 
antibiotics. Phages will be much more reliable when used 
externally and where the immune system gives them a chance 
by favoring them to persist within the body for a little while 
(Clark and March 2016).

Figure 1: Lysogenic cycle of phages. First, viruses bind to receptors on bacteria 
and inject genetic materials into the bacteria. Lysogenic phages incorporate their 
chromosomes with the genome of the host, forming a prophage. A prophage 
duplicates upon the division of the bacteria. The prophage might be activated by 
external factors and thus start the lytic phage life cycle [154].
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Clinical Cases Treated with Bacteriophages

In human medicine, bacteriophages are utilized both 
topically and internally to treat various problems and diseases 
that are resistant to antibiotic treatment. Patients suffering 
from ulcers received effective treatment from bacteriophage 
moistened in biodegradable fi lms and the wounds swiftly healed 
[43]. Numerous studies have demonstrated the effectiveness of 
local and topical phage treatments. Phage cocktails have been 
used locally to treat infections such as conjunctivitis, otitis, 
gingivitis, furunculosis, decubitis ulcer, open wound infection, 
burns, osthitis (caused by fractures) and chronic suppurative 
fi stulae caused by Staphylococci, Klebsiella, Pseudomonas, 
Proteus and Escherichia [44-47]. A commercial product called 
PhagoBioDerm, which targets P. aeruginosa, S. aureus, and 
Streptococcus spp. and contains phages as well as ciprofl oxacin, 
can be applied directly over infected wounds. Goode, et al. [48] 
eliminated Salmonella contamination on chicken skin by using 
a lytic bacteriophage.

A P. aeruginosa that had caused skin infections was treated 
with phage therapy by Vieira, et al. [49]. Phage treatment 
resulted in a four-orders-of-magnitude reduction in P. 
aeruginosa 709 levels in human skin. S. aureus, which produces 
wound abscess, may be successfully combated by sewage-
derived phage [50]. According to studies, mice that get an intra-
peritoneal injection of a bacteriophage to treat P. aeruginosa 
infection experience less infection [51]. E. coli-induced diarrhea 
in calves can be avoided by giving them bacteriophages orally. 
Similarly, oral phage therapy could help stop the sepsis brought 
on by P. aeruginosa [52]. Additionally, intramuscular treatments 
against E. coli in chickens have been performed, and they were 
successful in preventing septicemia [53]. Mice were saved from 
death by phages against vancomycin-resistant Enterococcus 
faecium [54]. In mouse models, phages against Acinetobacter 
baumanii, P. aeruginosa, and S. aureus also performed well [55]. 
As a result, Salmonella Typhimurium, one of the main threats to 
the swine sector, has been reduced in prevalence as a result of 
the use of phage [56,57].

Advantages and limitations of phage therapy

Bacteriophage treatment has been used in animals, 
plants, and humans with a diverse degree of accomplishment. 
Bacteriophages have various potential benefi ts over antibiotics, 
but at the same time, they do have drawbacks as well (Table 1). 
The main advantage of bacteriophages is their specifi city for 
target host bacteria, which signifi cantly reduces the destruction 
of the host’s normal fl ora. The bacteria to be targeted must be 
recognized fi rst, or else a mixture of bacteriophages should be 
used. Phages are self-limiting, i.e., they require their hosts to 
be continually growing; their persistence in the environment 
for a long period of time depends on their specifi c host 
availability (Clark and March 2016). Duplication at the site 
of infection is another merit of bacteriophages. They are safe 
with no or few side effects [35]. If bacteria become resistant to 
bacteriophages, bacteriophages will naturally change to infect 
the resistant bacteria, reducing the likelihood of bacterial 
escape (Hausler, 2007).

After their administration, bacteriophages can disperse 
very rapidly in the body, reaching almost every organ; but the 
immune system quickly clears systemic bacteriophages, which 
poses yet another problem for their acceptance as therapeutic 
agents [58,59]. One of the serious concerns about the use of 
bacteriophage therapy in vivo is a strong antibody response, 
which would clear the bacteriophages more quickly and thus 
the use of bacteriophages for a prolonged period of time would 
not be possible (Clark and March 2016).

Other limitations of bacteriophages as therapeutic agents 
are their narrow host ranges and the fact that bacteriophages 
are not permanently virulent under certain physiological 
situations. During the preparation of bacteriophage stocks, it 
must be ensured that bacteriophage preparations are free of 
bacteria and bacterial toxins in order to prevent secondary 
infections. But sterilizing bacteriophages could deactivate 
them. Bacteriophages may convey toxic properties to the 
bacteria, resulting in virulence [60]. One way around this is the 
use of the bacteriophage lytic enzyme endolysins, rather than 
administering the entire virion [61,62]. Likewise, genetically 
improved bacteriophages can be used, which will only deliver 
the DNA essential for making antibacterials that would be 
specifi c to the target bacteria [63].

Status of phage therapy in Ethiopia

Although bacteriophages are widely used as treatment 
agents for pathogenic bacteria in developed countries, this 
application potential is not widely practiced in Ethiopia. 
Only limited investigation has been conducted in our country 
regarding the therapeutic potential of bacteriophages, focusing 
on the isolation of bacteriophages and assessment of their 
activity against biofi lms of uropathogenic Escherichia coli in 
Jimma Town, South Western Ethiopia (Gudina et al., 2018).

As-biocontrol agents in food industry

Foodborne infections from microbial sources remain a 
severe food safety problem worldwide. In addition to being of 
substantial public health signifi cance, the economic impact of 
foodborne bacterial illness is signifi cant [64]. Contamination 
prevention and the endowment of a safe food supply is one of the 
extraordinary priority areas to control and bound the foodborne 
pathogen outbreaks under the “One Health” approach [65]. 
Nevertheless, the challenge is not a direct one to solve quickly 

Table 1: Potential benefi ts of bacteriophage therapy against antibiotic therapy [153].

Characteristics 
features 

phage therapy Antibiotics treatment

Specifi city Highly specifi c Wide range of action 

Toxicity
Almost totally non-

toxic
Variable levels of toxicity ranging from 

mild to severe 

Biofi lm penetration 
Effective penetrating 

ability 
Unable to penetrate except in high 

doses 
Possibility of 

resistance 
Almost non-existent High possibility of resistance 

Simplicity of 
administration 

not require repeated 
doses 

Require repeated doses 

Cost of treatment Cheaper more expensive 
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or simply. The epidemiology of foodborne pathogens is diffi cult 
and involves multiple routes of transmission from food animals 
and agricultural produce to consumers. For example, animals 
are often asymptomatic carriers of Shiga-toxin producing 
Escherichia coli (STEC), Salmonella, Campylobacter and Listeria, 
and they can spread the pathogens to other food animals, 
crops, slaughter facilities, and, in some instances, directly to 
humans. Food processing facilities can also harbor foodborne 
pathogens as biofi lms, which can potentially transfer to food 
products and reach consumers [66].

Traditional pathogen sanitization procedures in food 
processing facilities emphasize the use of chemicals, physical 
destruction techniques, and irradiation to reduce the microbial 
load in those facilities and the foods produced in them [67]. For 
instance, numerous harsh chemical sanitizers, such as chlorine 
and peracetic acid, are commonly used to reduce microbial 
contaminants in many fresh fruits and vegetables as well as 
ready-to-eat (RTE) food products [68]. Heat pasteurization is 
often used to decrease bacterial numbers, generally in liquids 
and dairy items, such as milk. High-pressure processing (HPP) 
is also used to successfully reduce pathogens in liquid products, 
as well as pre-cooked, meant to be frozen meals [69,70]. 
This technique exposes foods to high pressure to deactivate 
microbes. Irradiation has been accepted as a means of reducing 
the burden of pathogenic organisms in foods since 1997 [71].

Conversely, no single approach is 100% effective, and 
the aforementioned methods also have some substantial 
disadvantages. For example, many chemical sanitizers corrode 
and harm food processing materials [72,73] and may have 
toxic chemical residues that may damage the environment. 
Pasteurization and HPP are not appropriate for fresh produce 
and meat products as they can harmonically affect the 
organoleptic properties and/or the nutritional content of some 
foods [69,70]. Irradiation, which can deleteriously affect the 
appearance of some foods, also has low customer acceptance, 
which is compounded by a labeling requirement for many 
food items treated with radiation [74]. Food sustainability 
and safety are challenges that continue to dominate the food 
industry worldwide. The shift in Western countries towards 
consuming foods that are produced by natural means adds 
signifi cant pressure to produce foods that are safe, natural, 
free from chemical preservatives, and of acceptable quality to 
meet consumer demands [75].

The food industry has repeatedly had to contribute to efforts 
to avoid infectious diseases and the problems associated with 
antibiotic resistance in human pathogens originating in food 
animals. Regardless of the many advances in technological 
methods for the detection and removal of foodborne 
pathogens at each stage of the food production process, 
good manufacturing practices, quality control and sanitation 
and changes in animal agriculture and agronomic processes, 
microbial safety problems are still predominant. In addition, 
the controlled use of certain antibiotics during food animal 
production, together with the lack of development of novel 
antimicrobials, has put further strain on the food production 
sector and as such, there is a need for the development of 

alternative antibacterial approaches at the production level to 
maintain safety standards, control foodborne pathogens and 
limit their negative impact on the food industry and on human 
health [76].

The natural specifi city of phages to attack and destroy their 
target bacteria, in addition to the fact that they are abundant 
in the surrounding environments and are harmless to humans 
and animals, makes them valuable candidates for use in both 
the detection and control of pathogens at each stage of the 
food production process from farm-to-fork. In recent years, 
a number of bacteriophage-based products have gone into 
commercial use to control some of the leading foodborne 
pathogens, including Listeria monocytogenes, Escherichia coli, and 
Salmonella serovars [76,77]. The application of bacteriophages 
is harmless and related to the use of antibiotics [78]. Phages 
have been used since the 1980s to control and exclude bacterial 
contaminants from food surfaces, food-borne spoilage 
bacteria, and bacteria causing gastrointestinal diseases [57], as 
well as to disinfect raw food. Due to their specifi city, phages 
are smart for the sanitization of ready-to-eat foods (RTE) such 
as milk, vegetables, and meat products [79].

In addition to direct treatment of food, bacteriophage use is 
also indicated for decontaminating material surfaces in farms 
or food-processing facilities to signifi cantly decrease pathogen 
colonies on surfaces and the development of biofi lm, helping to 
reduce the risk of transmission of pathogens along the supply 
chain. In fact, biofi lm represents one of the most important 
sources of contamination with pathogens in farms or industrial 
settings, contributing to the transmission of pathogens to dairy 
products and, along the food chain, to consumers [78].

The idea of preventing pathogens in food by means of 
bacteriophages can be achieved at all stages of production in 
the classic ‘farm to fork’ approach throughout the complete 
food chain. Phages are suitable (i) to prevent or reduce 
colonization and diseases in livestock (phage therapy), (ii) to 
decontaminate carcasses and other raw products, such as fresh 
fruit and vegetables and to disinfect equipment and contact 
surfaces (bacteriophage sanitation and biocontrol); and (iii) 
to extend the shelf life of perishable manufactured foods as 
natural preservatives (biopreservation). Phages should also be 
considered in hurdle technology in combination with different 
preservation methods [80,81].

Merits and limitations of using bacteriophages as bio-
control agents

The fact that bacteriophages are presently being used as 
bio-control agents in sectors of food production [82] shows 
their advantage as effi cacious complementary approaches 
for controlling specifi c dangerous pathogens in food in many 
circumstances. The fact that they have GRAS status supports 
their safety for food applications, and indeed, there is no known 
negative side effect of using lytic bacteriophages on humans or 
animals. Bacteriophages are natural, and low-cost to produce 
[83,84]. While a suitable propagating host must be selected to 
ensure endotoxin and virulence factor contamination of the 
preparation does not occur, the commercialization timeframe 
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is less stringent than what might be required for human 
therapeutic applications [85].

Additionally, bacteriophages are highly specifi c for 
their target bacterial host and, as such, have no substantial 
impact on consumers’ resident microfl ora. Bacteriophages 
also don’t impact the sensory and quality characteristics of 
food [73]. Contrasting chemical biocides or antibiotics that 
have the ability to leak into food products and persist in the 
environment; bacteriophages persist in high numbers for 
a short time without their host. Commercial bacteriophage 
products are 100% natural and non-genetically modifi ed 
organisms (GMOs). They’re generally kosher, halal, and 
permitted in organic foods, with several offi cially certifi ed as 
such [73].

Generally, there are two main scientifi c challenges in 
bacteriophage-mediated biocontrol in food. Initially, the 
constituents of the bacteriophage product must have a wide 
enough host range to kill all members of the target pathogenic 
genus or species. Secondly, the bacteriophages need to be 
applied such that the particles physically come into contact 
with all or most of the target bacterial cells in order to work. It is 
also important that users of bacteriophage products in the food 
sector understand that individual products don’t guarantee 
the full well-being of foods if the foods are contaminated by a 
different foodborne pathogen (e.g. a pathogen not targeted by 
the phage product applied to the food) [86].

Although the biological characteristics of virulent phages 
provide benefi ts for improving food safety, these characteristics 
also lead to some of the limitations and disadvantages of 
bacteriophage biocontrol. As stated before, phages are highly 
specifi c and, as such, they are only active against the pathogen 
of interest. Still, if foods are contaminated with a group of 
different pathogens, a mixture of bacteriophage biocontrol 
products could be used to target more than one pathogen. 
Meanwhile, phages themselves are also microorganisms. 
Commonly used disinfectants or chemicals could deactivate 
them, so their use needs to be cautiously coordinated within 
the processing line. Additionally, the currently marketed 
bacteriophage preparations require refrigerated storage 
(typically 28°C). Hence, a good understanding of the biological 
properties of phages and designing optimal application 
regimens that consider those properties is essential for the best 
possible effi cacy of phage biocontrol intervention. The main 
advantages and disadvantages of bacteriophage biocontrol are 
indicated below in Table 2 [86].

Bacterial detection (phage typing)

Bacteriophage-based approaches for bacteria detection 
were developed using the bacteriophages’ typical capacity 
to grab host bacteria. Only the recognition of a suitable and 
workable host offers the chance for virion proliferation and 
virus life cycle completion. This offers an advantage over other 
widely used techniques, such as PCR or mass spectroscopy-
based ones, which might produce false positive results when 
dead bacteria are present. Bacteriophages are far less expensive 
and simpler to prepare than antibodies, while conventional 

biochemical or culturing approaches take a lot longer to 
produce results [87,88].

Due to the fact that bacteriophages only infect live hosts, 
bacterial cells may be quickly and precisely identifi ed using 
bacteriophage detection methods. Bacteriophages can be 
adjusted, lysed, isolated, and extracted from their hosts to 
permit detection in a variety of methods. The three main 
categories of phage-mediated detection techniques are 
reporter bacteriophages, bacteriophage amplifi cation, and 
bacteriophage capture [89].

Genetically modifi ed reporter phages allow the entry 
of reporter genes into the bacterial host, where the gene is 
produced, a signal is picked up, and the pathogen is recognized. 
In order to enable gene expression when the phage infects 
live hosts, reporter genes encoding luciferases or fl uorescent 
proteins have been introduced into the phage genome [90].

The formation of offspring phages or the demise of the 
bacterial host is used as a detection signal in bacteriophage 
multiplication assays [91]. Typically, the development of 
plaques on a Petri plate is used to gauge the bacteriophage’s 
growth. Plaques develop when infected hosts lyse, releasing 
offspring phage that allows bacterial reinfection. Bacteriophage 
amplifi cation requires phage infection, extracellular phage 
chemical inactivation using virucide and plaque detection 
using a rapidly proliferating “reporter” organism/lawn. Each 
plaque is thought to represent the initially infected bacterium. 
Plaques can then be removed and analyzed using PCR for 
further specifi city [92,93].

Phage capture uses a phage’s features to specifi cally bind 
bacteria, such as endolysins or tail spikes. Endolysins are 
phage-produced enzymes that help lyse bacteria by dissolving 

Table2: Benefi ts and limitations of bacteriophage as a biocontrol [86].

Pros  Cons

Phages are a natural product
Not entire bacteriophages make a good 
biocontrol agent, e.g. temperate phages. 

Specifi c only targets problem 
foodborne bacterial pathogens

May not guarantee full well-being of foods if 
the foods are contaminated by a mixture of 

pathogen 

Effective in killing targeted bacteria
Their theoretical use is constrained by a small 

host range; A mixture of bacteriophages can be 
used to get around this restriction

Single dose application

Despite lytic phages' capacity to infect new 
hosts, residual activity has not been seen on 
food; this may be because food surfaces are 

physically inaccessible to lytic phages.
limited possibility for resistance 
and absence of antibiotic cross-

resistance

bacteriophage resistant bacterial strains 
can emerge, but using a cocktail is shown to 

reduce the phage resistance
Comparable simplicity of 

preparation and application and 
rapid discovery

Little inherent toxicity and 
no negative effects on the 

environment
does not affect the food's 
rheological, nutritional, or 

organoleptic qualities
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their cell walls. They have two domains: one breaks down the 
cell wall, while the other, the cell wall binding domain (CWBD), 
selectively identifi es regions of the host cell wall. To enable 
infection, phage tail spikes bind and selectively attach to host 
cells. Tail spikes have been used to collect particular bacteria 
from a variety of matrices, such as food and processing 
machinery [89].

Phage display system

Despite the fact that natural phages have been successfully 
used to lower bacterial resistance, some researchers have gone 
above and beyond to uncover additional antibacterial strategies 
based on bacteriophages. This results in bacteriophage 
modifi cations by gene engineering, the main benefi t of which is 
increased precision [94]. However, bacteriophage engineering 
has further benefi ts, such as obtaining phage elements that can 
recognize bacterial hosts, altering phage hosts, or enhancing 
their activity (Hauser, 2016).

George P. Smith introduced the idea of bacteriophage 
display for the fi rst time in 1985 (Figure 2) [95]. It is a 
molecular technique used to produce polypeptides with novel 
properties. The desired protein is expressed on the surface 
of the bacteriophage particle when the DNA encoding the 
polypeptide is linked with genes for the bacteriophage coat 
protein [95,96]. Although the E. coli fi lamentous phage M12 
is frequently utilized, the phage display technique also makes 

use of lambda and T7 [97,98]. Detecting and isolating peptides 
with high specifi city and affi nity for target proteins can be 
done using bacteriophage display libraries. These peptides 
can be employed in medication development as tools for 
comprehending molecular recognition and reducing receptor 
mimics [96]. 

Possibly different phage kinds are utilized in phage display 
systems, but fi lamentous phages are the most benefi cial 
because they enable the genetic material extension by merely 
enlarging their fi lament size. The phage’s interior structures 
are unharmed during the process of delivering genetic material. 
Lysogenic fi lamentous phages do not kill bacterial cells in 
order to complete their life cycle and release new virions. The 
standard phage for this technique is M13. The most intriguing 
gene in phage display is gene VIII, which codes for important 
structural proteins and can show short peptides and produce a 
large number of desired compounds. In contrast, gene III only 
produces a small number of minor proteins and is more suited 
for producing big peptides than other genes [99].

The development of vaccines, the advancement of new 
medications, the study of protein-protein interactions, the 
selection and modifi cation of substances of interest, the 
development of monoclonal antibodies with the desired 
specifi city for therapeutic use, the creation of libraries of 
peptides and other substances, in epitope mapping (as 
antivenom), or the production of food as biocontrol, all benefi t 

Figure 2: Some methods of phage display (A) The minor coat-protein gene is directly linked to the gene encoding a foreign peptide. The foreign antigen is present in all minor 
coat proteins. (b) A foreign peptide gene is fused to the gene for a major coat protein, and the major coat protein gene itself is also present. Some signifi cant coat proteins 
exhibit foreign proteins. (c) A helper phage that hasn’t changed is introduced into cells that have phagemids, which are plasmids with bacteriophage and plasmid origins of 
replication. These cells then express the foreign peptide or protein. Some coat proteins exhibit foreign antigens.
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greatly from the use of bacteriophage display. Similarly, 
selecting and isolating antibodies against desirable antigens or 
other targets, followed by the creation of an antibody library, is 
a highly helpful strategy [100].

Bacterial evolution vehicles

Bacteriophages play a signifi cant role in horizontal gene 
transfer among bacteria. When bacteriophages multiply, they 
can occasionally encapsidate host bacterial DNA to generate 
transducing particles. Transduction is the process by which 
foreign DNA (plasmid or bacterial) is transmitted into bacterial 
cells with the help of a bacteriophage. In theory, transducing 
particles are similar to mature bacteriophage particles, but 
when they infect other cells, they release bacterial DNA rather 
than a viral genome. The DNA can then replicate as a plasmid 
or be recombined into the chromosome in the new host cell. 
Genetic transduction is the term for this process of bacterial 
DNA transfer from one bacterium to another [101].

Transducing particles’ genetic cargo can have a signifi cant 
impact on the bacteria they transfer to. For instance, genes 
encoding for virulence or antibiotic resistance might confer 
new traits and open up new ecological niches, hastening the 
rise of new strains that are progressively more virulent and 
resistant to drugs. Although there are a number of horizontal 
gene transfer processes, phage transduction is frequently 
considered to be the primary method by which bacteria 
obtain the genes necessary for quick adaptation to changing 
environmental obstacles [101].

Generalized transduction

In Salmonella phage P22, generalized transduction was 
the fi rst mode of bacteriophage-mediated gene transfer to 
be identifi ed and discovered [102]. It is how bacteriophages 
package and transfer any type of bacterial DNA (chromosomal or 
plasmid) to another bacterium. These so-called pseudoviruses 
are nevertheless capable of binding to cells and ejecting 
packaged DNA into a new host. Depending on the kind of donor 

DNA, the transduced molecules can either be integrated or 
stay free to continue reproducing as plasmids in the cytoplasm 
(plasmid or chromosomal). This form of transduction can take 
place during the lytic phase of both the lytic and lysogenic life 
cycles (Figure 3) [103].

Specialized transduction

The second transduction mechanism described and 
discovered in the coli phage was specialized transduction 
[104]. Specialized transduction, in contrast to generalized 
transduction, is unique to lysogenic bacteriophages and entails 
the prophage DNA excision from a particular integration site 
as well as a neighboring region of the host genome (Figure 3). 
Site-specifi c recombination (mediated by phage integrases) 
or homologous recombination (mediated by bacterial 
recombinases) causes the integration of the phage DNA into the 
host genome, typically at specifi ed places, after packing into 
virions and infection of a new host cell [105]. The term “lysogenic 
conversion” refers to the phenotypic alterations that occur as a 
result of the prophage’s integration into the host genome [106]. 
Typically, lysogenic conversion increases the pathogenicity of 
bacteria to improve fi tness [107]. The environment’s presence 
of bacteria, bacterial viruses and bacteriophages as well as 
horizontal gene transfer enables the bacterial host to diversify 
its gene pool, which aids in environmental adaptability [108]. 
Therefore, bacteria can inhabit new ecological niches thanks 
to bacteriophage-mediated gene transfer, which infl uences 
subsequent gene transfer with local populations and increases 
bacterial diversity [19].

Vehicles for vaccines delivery (vaccination tools)

accines are biological agents that stimulate the immune 
system of the host to provide both therapy and disease 
prevention. They are made from disease-causing agents 
(bacteria, viruses, etc.). Conventional vaccines of the live 
attenuated or inactivated microbe variety have advanced 
greatly and some of them have been applied in clinical settings 
[109]. Newly developed vaccines are based on selected target 

Figure 3: Bacterial genetic transduction. In generalized transduction (top) and specialized transduction (bottom), the viral genome (in red) fi rst undergoes theta replication, 
followed by rolling circle replication [111].
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antigens, derived from an infectious microorganism, a tumor 
cell, an allergen, or an auto-antigen. The target molecule may 
be administered as a purifi ed protein or as a peptide (s) or may 
be expressed from plasmid DNA or a recombinant virus [110]. 

Bacteriophages have been shown to have the capacity to 
deliver vaccines both directly and indirectly. They can fi rst 
display vaccine antigens as fusions to their coat proteins 
utilizing bacteriophage display, which causes the desired 
immune response [111]. Additionally, a DNA vaccine expression 
cassette can be delivered to eukaryotic cells using the phage 
particle as a gene delivery vehicle [112].

When compared to phage DNA vaccines, bacteriophage 
display vaccines are more stable since they are based on a 
virion that contains the gene that codes for the antigen being 
exhibited. On the other hand, phage DNA vaccines contain 
DNA that has the antigen gene cloned in a eukaryotic cassette 
inside the virion. These vaccinations produce a stronger 
immunological response than traditional vaccines do. These 
vaccinations are being studied for use against things including 
bacteria, autoimmune disorders, cancer, fungi, parasites and 
even contraceptive vaccines [113]. Studies have also looked 
into using vaccines to prevent or lessen the development of 
antibiotic resistance. This may be novel because when a patient 
is exposed to a pathogen, they trigger an immune response that 
prevents or lessens the sickness. Additionally, if vaccination 
rates rise among the populace, herd immunity may result, in 
protecting others who aren’t vaccinated [114]. Phage display, 
like other techniques, has several shortcomings that need to be 
examined. The peptide’s ability to bind to its target may be lost 
during the transfer to a soluble medium. Additionally, there is 
a chance that peptides’ in vivo and in vitro functionalities will 
differ, which could have an adverse impact on the patient. Due 
to proteolysis, peptides are also unstable and their capacity to 
trigger immunological reactions might provide a challenge for 
their use. However, various new methods are being explored 
to address these obstacles. Many of them try to reduce 
immunogenicity and increase peptide affi nity and half-life 
using protein engineering or nanotechnology [115].

Purifi ed phage particles are administered to the host after 
the vaccine gene is cloned in a lambda bacteriophage under the 
direction of a eukaryotic expression cassette. The coat shields 
DNA from deterioration, and because it behaves like a virus 
particle, it would direct the vaccination toward the cells that 
present the antigen [116]. In mice and rabbits, the antibody 
response was vastly superior when compared to the usual DNA 
vaccine [117]. A DNA vaccine encapsulated in a phage particle 
under a eukaryotic promoter and a phage display version of the 
same antigen present on the phage surface have recently been 
suggested as potential components of a hybrid phage [116]. A 
vaccination of this type would successfully target the humoral 
and cellular immune systems [59]. By adding particular 
protein sequences to target particular immune cell types, such 
as galactose residues that will target galactose-recognizing 
hepatic receptors in the liver, it can also be extended to the 
alteration of the phage vaccine’s surface. By separating 
peptides from the phage display libraries, Langerhans cells and 
dendritic cells [118] may both be targeted [119].

Gene delivery

The possible therapeutic gene delivery agents are phages 
[120,121]. Phage delivery of DNA vaccines, in which the phage 
coat shields the DNA inside from degradation after injection, is 
comparable to the use of phages for targeted gene delivery. Both, 
however, are conceptually distinct. Phages can target particular 
cell types because of their capacity to show foreign proteins 
on their surfaces, which is a requirement for effective gene 
therapy [116]. To show the targeting and processing molecules 
on the surfaces of phages, researchers have employed phage 
display and artifi cial covalent conjugation [122,123]. Targeting 
sequences, such as fi broblast growth factor, have been 
utilized to deliver phages to cells with the necessary receptors 
[124,125]. Protein sequences like the adenovirus penton base, 
which mediates entry, attachment, and endosomal release, are 
employed to increase the absorption and endosomal release of 
phages [126]. The absorption and nuclear targeting of modifi ed 
phages like lambda have also been improved by the protein 
transduction domain of the human immunodefi ciency virus 
(HIV) tat protein and the nuclear localization signal of the 
simian virus 40 (SV40) T antigen [127].

Other displayed peptides that can facilitate gene delivery 
via phages include integrin binding peptides that enhance 
binding and uptake [124] and DNA degradation reducing DNase 
II inhibitors [125]. To screen the ability of phages to target 
specifi c cells and tissues, phage display libraries have been 
used in mice many times and every time phages were found in 
specifi c tissues [128]. For instance, to isolate phages that target 
the liver, mice were inoculated with phage display libraries and 
phages were isolated after extracting the livers [116]. A similar 
in vitro strategy is used for the isolation of phage-displayed 
peptides that enhance cytoplasmic uptake into mammalian 
cells [129]. Therefore, phages once more demonstrated their 
versatility by making it possible to target particular tissues 
either by randomly scanning phage display libraries or by 
rational design [116].

Conclusion and recommendations

Generally, phages are a type of virus extensively 
disseminated in nature whose progression is fi rmly connected 
with the bacterial cell. They have been used for various types 
of applications starting from their discovery time and are still 
playing signifi cant roles in modern biotechnology since their 
genomes are easily manipulated. Either lytic or lysogenic 
bacteriophages are estimated to be found everywhere the host 
bacteria live. Hence, it’s possible to get and isolate these viruses 
from any type of sample from which the hosts can be obtained. 
Phages have increased potential application in different parts 
of the world, especially in western countries, as therapeutic 
agents in different hospitals, clinics and food industries due to 
the rise in antimicrobial resistance strains of different bacteria 
pathogens. However, in developing countries, these phage 
futures are not well pursued or investigated. Bacteriophages 
look to be a great solution as an alternative treatment against 
bacterial diseases, but they are also used as interesting 
tools in vaccine delivery vehicles, modulating bacterial 
populations and assisting in diagnosis. Therefore, based on 
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the above conclusion, the following points are forwarded as 
recommendations.

• It is recommended that bacteriophage therapy be 
expanded in various hospitals, clinics, and food 
industries to alleviate the burden of multi-drug-
resistant bacterial pathogens.

• It is good if the building different phage companies are 
used for the production of different phage cocktails that 
have treatment effects will be constructed.

• It is recommended that more awareness be raised about 
bacteriophage research in order to develop monitoring 
and safety procedures that will lead to the widespread 
use of bacteriophages in various fi elds, including clinics.
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